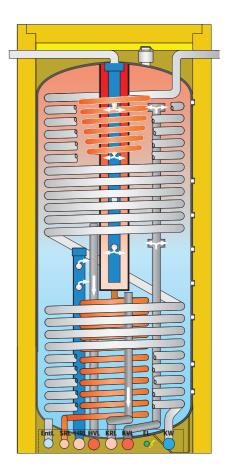


ÖKOZON - DREI in EINEM

LEGENDE:

- 1 Thermo-Schichtladelanze
- 2 Schichtrohrwärmetauscher
- 3 LOW-FLOW-Wärmetauscher
- 4 HIGH-FLOW-Wärmetauscher
- 5 Edelstahl-Glattrohrwärmetauscher
- 6 Schichtladelanze (Heizung-Rücklauf)
- 7 Heizung-Vorlauf
- 8 Kessel-Rücklauf
- 9 Kessel-Vorlauf
- 10 Brauchwassermischer

vereinfachte, schematische Darstellung



EINS ... solarer Kreislauf

Durch die Thermo-Schichtladelanze (1) strömt die erwärmte Solarflüssigkeit in den Schichtspeicher und gelangt thermoorientiert in den Schichtrohrwärmetauscher (2). Über die Oberfläche des Schichtrohrwärmetauschers wird der Energieertrag an das umgebende Speichermedium abgegeben (Einsparung von externen Wärmetauschern). Diese Schichtung, welche die Temperaturabhängigkeit des spezifischen Gewichtes flüssiger Medien nutzt, ist elektronisch - mechanisch gesteuerten Systemen überlegen. Durch die Vergrößerung des Querschnittes nach dem Eintritt in die Thermo-Schichtladelanze wird gewährleistet, dass die erzwungene Fließgeschwindigkeit geringer ist als die im Schichtrohrwärmetauscher auftretende thermische Auftriebsgeschwindigkeit.

Die Schnellladung:

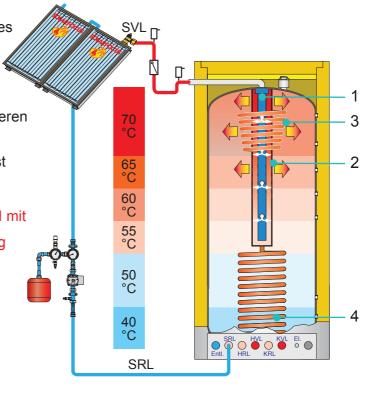
Um eine "Schnellladung" im oberen Speicherbereich zu erreichen, ist im oberen Drittel des Schichtrohrwärmetauschers ein zusätzlicher Wärmetauscher, der LOW-FLOW-Wärmetauscher (3) eingebaut. Der LOW-FLOW-Wärmetauscher ermöglicht kürzeste Aufheizzeiten des oberen Speicherbereiches. Rasche Verfügbarkeit von nutzbaren Temperaturen, auch bei kurzer Sonnenscheindauer!

Wechselbedingung:

Um eine Durchmischung des Speicherinhaltes bei geringen Solartemperaturen zu vermeiden, ist die Thermo-Schichtladelanze aus nicht wärmeleitendem Material gefertigt. Gering erwärmte Solarflüssigkeit

fällt, ohne sich mit dem bereits eingeschichtetem Speichermedium zu vermischen, bis zum Boden des Schichtrohrwärmetauschers. Um auch niedrige Temperaturen optimal zu verwerten und eine maximale Temperaturspreizung zwischen Solar-Vorlauf und Solar-Rücklauf zu erreichen, ist im unteren Bereich des Schichtspeichers der HIGH-FLOW-

Wärmetauscher eingebaut. Der Schicht-speicher ist vorzugsweise im MATCHED-FLOW zu beladen.

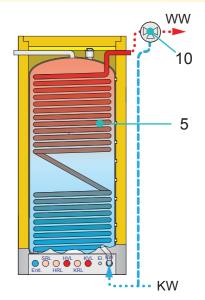

Das heißt: Mit LOW-FLOW auf Temperatur und mit

HIGH-FLOW auf Energieeinbringung

(spezifischer Massenfluss = $8 - 70 \text{ l/m}^2/\text{h}$).

IHR NUTZEN

- Keine beweglichen Teile.
- Keine externen Wärmetauscher.
- Keine zusätzlichen Ventile und Pumpen erforderlich.
- Einfaches Hydraulikkonzept.



... Frischwassertechnik

IHR NUTZEN

- Das großzügig dimensionierte Edelstahlregister (5) ermöglicht eine hygienische Trinkwasseraufbereitung im Durchlaufsystem.
- Legionellenfreie Wasserbereitstellung, hohe Schüttleistung:
 - 1.300 l bei 60 °C und
 - 1.500 I bei 70 °C Speichertemperatur.

... Heizung- und Kesselanschlüsse

Teilsolare Raumheizung:

Für die Raumheizung wird durch das Heizungs-Vorlaufrohr (7) dem Schichtspeicher Wärme entzogen. Der für die Warmwasserbereitung wichtige obere Bereich des Speichers bleibt dabei unberührt. Um beim Heizbetrieb eine Durchmischung des Speichermediums zu vermeiden, ist im Speicher eine Schichtladelanze (6) im Heizungsrücklauf eingesetzt. Die unterschiedlichen Rücklauftemperaturen des Heizkreislaufes werden wieder in die jeweiligen Temperaturzonen des Speichers rückgeschichtet.

(8) Kesselrücklauf, (9) Kesselvorlauf, (10) Brauchwassermischer.

Entlüftung 6 7 8 9 HVL KVL KRL

IHR NUTZEN

- Vermeidung von Kältebrücken.
- Schichtladelanze im Heizungsrücklauf.
- Einfache hydraulische Einbindung.
- Platz- und kostensparende Montage.

Liefergrößen von 800 I bis 2.000 I

"ÖKOZON" mit Trinkwassererwärmung

Integriertes Schichtladerohr für die Solarbeladung und den Heizungsrücklauf. Großzügig dimensioniertes Edelstahlglattrohrregister für die Trinkwassererwärmung im Durchlaufprinzip.

Anschlüsse 1" AG großteils unten vor den Speicher gezogen.

1273	SISP-T-800	ohne Isolierung	Ø 790 x 2030 mm	
1275	SISP-T-1000	ohne Isolierung	Ø 850 x 2050 mm	
Ab 1500 I eine Lieferzeit von ca. 5 Wochen beachten!				
1277	SISP-T-1500	ohne Isolierung	Ø 950 x 2400 mm	
1279	SISP-T-2000	ohne Isolierung	Ø 1000 x 2920 mm	

Isolierung für Schichtspeicher

SISP-I-2000

9420

90 mm PU-Halbschalenisolierung, außen mit Aluminiumblech beschichtet. Farbe: Grau, RAL 9006

9417	SISP-I-800	Isolierung	Ø 990 x 2130 mm
9418	SISP-I-1000	Isolierung	Ø 1050 x 2150 mm
9419	SISP-I-1500	Isolierung	Ø 1150 x 2500 mm

Isolierung

max. Betriebsdruck (Puffer)	3 bar
max. Betriebsdruck (Brauchwasserwärmetauscher)	10 bar
max. Betriebsdruck (Solarwärmetauscher)	6 bar
max. Betriebstemperatur	70 °C

Ø 1200 x 3020 mm

Sondergrößen auf Anfrage!

	Ansc	hluß fü	r Entli	iftu	ıng	
SVL					WW (1")	•
(1")		HVL KRL A B		1/2" 1/2" 1/2" 1/2" 1/2" 1/2"		C .

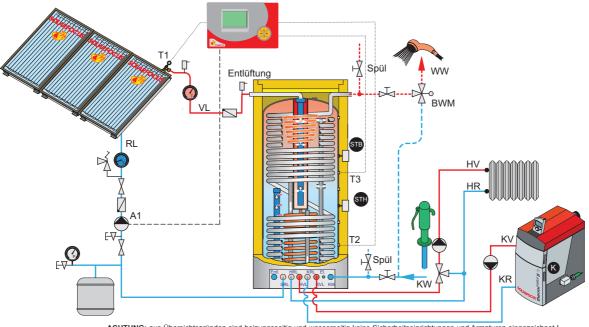
ÖKOZON -T	Schichtspeicher MIT Trinkwassererwärmung					
SISP-T Gesamtinhalt	800 Liter	1000 Liter	1500 Liter	2000 Liter		
A (mm) Durchmesser / ohne Isolierung	790	850	950	1000		
B (mm) Durchmesser / mit Isolierung	990	1050	1150	1250		
C (mm) Höhe / mit Isolierung	2130	2150	2500	3020		
D (mm) Solarfühler	300	310	330	340		
E (mm) Biomasse Stückholz Kessel - Fühler für Heizungsspeicher ohne Solarpuffer Volumen	440	450	470	480		
F (mm) Zusatzfühler	720	730	1070	1470		
G (mm) Automatikkessel (Pellets-Öl-Gas) Kesselfühler	870	880	1220	1620		
H (mm) Zusatzfühler	1020	1030	1370	1770		
l (mm) Solarfühler für Schnellladung	1170	1180	1520	1920		
J (mm) Kesselfühler f. Trinkwasserspeicher	1320	1330	1720	2120		
K (mm) Temperaturanzeige	1700	1710	2030	2540		
L (mm) Warmwasser / Solarvorlauf	1970	1990	2330	2850		
Zapfleistung (I/h) Warmwassertemperatur 45°C bei Speichertemperatur 60°C, Leistung 53 kW	1300	1300	1300	1300		
Zapfleistung (I/h) Warmwassertemperatur 45°C bei Speichertemperatur 70°C, Leistung 62 kW	1500	1500	1500	1500		
NL (DIN 4708)	2,5	2,5	2,5	2,5		
Gewicht (kg)	270	300	390	460		

Kabel-DurchführungKVL Kessel - Vorlauf (1")KRL Kessel - Rücklauf (1")

SVL Solar - Vorlauf (1")
SRL Solar - Rücklauf (1")
WW Warmwasser (1")

KW Kaltwasser (1")HVL Heizung - Vorlauf (1")HRL Heizung - Rücklauf (1")

Entl. Entleerung (1")



Eingesetzt wird der Ökozon vorzugsweise in Einfamilienhäusern bis ca. 20 kW Heizlast. Kippmaß = Speicherhöhenmaß mit Isolierung Speicherhöhe + ca. 50 mm = notwendige Raumhöhe Sondergrößen und Sonderanfertigungen: auf Anfrage, ca. 20 % Aufpreis und ca. 5 Wochen Lieferzeit!

Kundennutzen:

- ✓ Klug geschichtet viel gespart
- ✓ Speichert ohne zusätzliche Energie heißes Wasser in die heiße Zone und warmes Wasser in die warme Zone
- ✓ Ein spezieller Schichtspeicher der Speicher-Lade-Management, Frischwassertechnik und Heizungs- und Kesselanschlüsse integriert hat
- ✓ Unterschiedliche Beladung des Speichers möglich
- ✓ High Flow zur schnellen Energieeinbringung in den Speicher
- ✓ Low Flow um den Speicher immer auf der geeigneten Temperatur zu halten
- ✓ Keine beweglichen Teile im Speicher
- ✓ Keine externen Wärmetauscher
- ✓ Es sind keine zusätzlichen Ventile und Pumpen erforderlich
- Einfaches Hydraulikkonzept
- ✓ Großzügig dimensioniertes Edelstahlregister
- ✓ Hygienische legionellenfreie Trinkwasserbereitung im Durchlaufsystem
- ✓ Hohe Schüttleistung
- ✔ Beim Anschluss in das Kessel- und Heizungssystem:
 - Vermeidung von Kältebrücken
 - Spezielle Schichtladelanze im Heizungsrücklauf
 - Einfache hydraulische Einbindung
 - Platz- und kostensparende Montage
- ✓ Abnehmbare Hartschaumisolierung (90 mm)

Schema - Warmwasserbereitung und Heizungsunterstützung mit Schichtspeicher ÖKOZON-SISP-T - Nachheizung über Kessel

